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I. GENERAL DISCUSSION 

In this lab and the next we will further investigate the connection between time and frequency 

domain responses.  In this lab we will establish the theoretical background, begin using the 

Fourier Transform and investigate these relations using Matlab simulation.  Here we will also 

introduce Matlab programming using m-files and some more useful Matlab functions.  In the 

next lab these same systems will be explored experimentally using real hardware and the 

Spectrum analyzer.  As preparation for this lab you need to read over the following and 

familiarize yourself with the basics of program creation before coming to lab. 

 

Start with the Matlab users guide (under the Help section of the program) at: 

 

 
And read the subsections entitled “Overview”, “Creating a Program” and “Getting the Bugs Out” 

 

Next starting at: 

 

 
in the Matlab users guide read the next 4 sections entitled “Overview”, “Types of M-Files”, 

“Basic Parts of an M-File” and “Creating a Simple M-File”. 

 

Frequency domain techniques are universally used for the analysis and design of wave filters 

whose purpose is to modify a sinusoid only in amplitude and phase. As such, these filters are 

necessarily linear and time-invariant. This particularly means their input-output relationship can 

be characterized using the signals and systems concept of the time domain impulse response ( )h t . 

Remember, this unique signal is what happens when a fictitious delta function signal, ( )tδ  is 

applied to the input. Although the delta function is counter-intuitive: it has infinite amplitude, 

zero duration in time but unit area, it possesses the desirable property of containing all 

frequencies. Hitting an LTI filter with a delta is the mathematically the same as having all 

frequencies simultaneously applied to the filter, so conceptually at least, it should be evident how 

the resulting impulse response shapes these different frequencies in amplitude and phase (time-

delay), and therefore completely generalizes any LTI system. This enables us to then find the 

response to any arbitrary input signal using time domain convolution.  

 

Since we are usually interested in the steady-state frequency response of wave filters, we seek a 

way to characterize them directly in the frequency domain. That is, we want to know how 

applied sinusoids (tones) appear at the output. Such a technique exists and requires that we find a 

frequency domain function as general as the impulse response. This is known as the system 

response or system function ( )H ω or ( )H f , and is easily found by simply taking the Fourier 

Transform (FT) of the impulse response.  

 

The utility of working directly in the frequency domain avoids the otherwise messy time domain 

math typically involving ordinary differential equations and often arduous convolution 

integrations. Generally, this greatly simplifies things, since ordinary differential equations are 

transformed into algebraic equations, and finding the response to an arbitrary input otherwise 
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requiring time domain convolution, becomes an exercise in relatively simple algebraic 

multiplication. The key is having or knowing )(th and making skillful use of appropriate Fourier 

Transform “pairs”. This lab uses the frequency domain system function to simulate and 

experimentally observe the frequency and phase responses for two different low-pass filters 

(LPF), a first order RC LPF and second order Butterworth LPF. Observe this only works with 

applied sinusoids.  

 

The Fourier Transform (FT) defines a unique relation between a signal in the time domain and 

its representation in the frequency domain. Being a transform, no information is created 

or lost in the process, so the original signal can be recovered from knowing the FT and using 

the Inverse FT. This symmetrical relationship is an example of what is meant by “FT pairs”. 

Observe the FT results in two pieces of information necessary to invert back to the time domain: 

amplitude versus frequency, and phase versus frequency. In electrical engineering, signals 

having both amplitude and phase information are expressed mathematically using single 

complex numbers.  
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The FT mappings for real or complex valued continuous time voltage signals are given below: 

 

[1a]  
2

( ) [ ( )] ( )
j ftG f FT v t v t e dtπ−

= = ∫  

 or 

[1b]  ( ) [ ( )] ( )
j t

G FT v t v t e dt
ω

ω

+∞
−

−∞

= = ∫  

   

The Inverse Fourier Transform (IFT or 1FT − ) is defined by: 

 

[2a]  
2

1
( ) [ ( )] ( )

j ft

v t FT G f G f e df
π+

∞
−

−∞

= = ∫  

 or 

[2b]  1
( ) [ ( )] ( )

j t

v t FT G G e d

ω

ω ω ω

+
∞

−

−∞

= = ∫  

 

Using the first or second relation of each transform equation depends on whether we are 

primarily working with Hertzian frequency “ f ” (cycles per second) or radian (angular) 

frequency “ω ” (radians per second). Theoretical treatments generally use radian frequency for 

brevity, while experimental work or work having experimental application use Hertzian 

frequency because that is what our instruments use. When converting back and forth, don’t 

forget the factor 2π ! (about 6 if you are doing rough calculations in your head). 

Formally, solving the time domain differential equations associated with a physical LTI system, 

using a Dirac delta function as input and zero initial conditions (no energy in the system), gives 

the impulse response h(t).  From this we can find the system response or system function,  

[3]   [ ( )] ( )FT h t H f=  

[4]  1[ ( )] ( )FT H f h t−

=  

This symmetrical relationship defines the usual FT pair:  

[5]  ( ) ( )h t H f⇔  or ( ) ( )h t H ω⇔ or sometimes ( ) ( )h t H jω⇔  

Note the last form is generally associated with “s-domain” theory, where s jω= . You will learn 

more about this later in the course when the Laplace transform is discussed.   
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Suppose we know a filter is linear and time-invariant and want to find its system function. We 

can do this directly in the frequency domain by specifying the FT of the input and output signals. 

Consider how this is done. The time convolution property and its dual, the frequency convolution 

property state that if 

[6]  
1 1
( ) ( )v t V ω⇔  and 

2 2
( ) ( )v t V ω⇔  

convolution in time is equivalent to multiplication in frequency: 

[7]  
1 2 1 2
( ) ( ) ( ) ( )v t v t V Vω ω∗ ⇔ , (time convolution) 

and multiplication in time is equivalent to convolution in frequency: 

[8]  
1 2 1 2
( ) ( ) ( ) ( )v t v t V Vω ω⇔ ∗ , (frequency convolution). 

Inspection of [9] reveals that if we now let
2
( ) ( )v t h t= , and we know that ( ) ( )h t H ω⇔ , then 

[9]  
1 1
( ) ( ) ( ) ( )v t h t V Hω ω∗ ⇔ . 

Hence, finding 
1
( )V ω and 

2
( )V ω we can find ( )H ω since we know  

[10]  
1 2
( ) ( ) ( )V H Vω ω ω= , or 2

1

( )
( )

( )

V
H

V

ω

ω

ω

=  

Eqn. (10) is equivalent to doing this the hard way - by time convolution: 

[11]  
1 2
( ) ( ) ( )v t h t v t∗ = =

1 2
( ) ( )v v t dτ τ τ

+∞

−∞

−∫  

but in general is much easier to calculate than the integral in [11].
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II. Low-Pass Filters 

Let us turn our attention now to the input/output characteristics of two linear time-invariant 

systems that are different implementations of the basic electrical low pass filter
1
. Conceptually, 

these circuits pass frequencies below some reference frequency, called the cutoff frequency 

c
f (or

c
ω ) without appreciable attenuation; this range is aptly called the passband. The filter 

otherwise attenuates frequencies above cutoff; this region is called the stopband. Ideal low-pass 

filters have a brick-wall response separating the passband and stopband regions that isn’t 

possible to realize experimentally, where anything above
c
f is completely blocked and anything 

below is passed. Therefore, increasing the input frequency with practical filters will result in the 

output gradually or rapidly decreasing. By convention, the cutoff frequency is defined where the 

amplitude has decreased by -3dB with respect to the input (also the point where power output has 

decreased by two). Filter input-output amplitude relationships are usually drawn as two-

dimensional x-y log-log plots of magnitude response vs. frequency (Hertzian or radian) called 

Bode Plots, where )(log20
10

fHy = , and fx
10

log= . Remember that for the FT to be invertible, 

both amplitude and phase (time-delay) must be retained. The Bode Plot expresses only the 

amplitude part, while a second plot expresses phase vs. frequency, where )( fy θ=  

and fx
10

log= resulting in a linear-log relationship. Note that phase is found from the input-

output time delay for each frequency.  

The simplest possible low-pass filter can be made from a series resistor and capacitor with the 

output taken across the capacitor as shown.  

 

 

R

CV
in

V
out

R

CV
in

V
out

 

 

Fig. 1. Single pole low-pass filter. 

                                                           
1
 A very informative discussion of low-pass filters can be found at Wikipedia: http://en.wikipedia.org/wiki/Low-

pass_filter . This article has many useful explanatory links. 
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This circuit, despite its simplicity, is widely used in electrical and computer engineering. It has a 

cutoff frequency given by
RC

f
C

π2

1
= [Hz], where the RC product in the denominator is also 

known as the time-contant, RC=τ , sinceτ has physical dimensions of time. A normalized Bode 

plot is shown below, where the y-axis shows the gain never exceeds 






V

V
1  (or 0 dB). One 

advantage of the log-log relationship is the rate at which a filter attentuates frequencies beyond 

cutoff always appears linear. The RC filter shown has a roll-off rate of -20 dB /decade or -6dB / 

octave. This means that increasing the frequency by a factor of 10 (a decade) will cause the 

output to decrease by -20 dB or a scalar input-ouput factor of 1/10 (since dB20
10

1
log20 −= ). An 

octave is a doubling in frequency, so every increase in frequency by a factor of two will cause 

the output to decrease by -6 dB or a scalar input-output factor of two (since dB6
2

1
log20 −= ). 

These relations are shown in Fig. 2. 

 

 

 

 

 

 

 

Fig. 2. Bode plot for a normalized single time-constant or 1
st
 order RC 

LPF
2
. The intercept point of the projected straight line segments occurs at 

the corner frequency. 

This circuit has impulse and system responses:  )(
1

)( /
tue

RC
th

RCt−
= , and

fRCj
fH

π21

1
)(

+

= . 

                                                           
2
 Graphs ibid. Wikipedia. 
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The two left plots
2
 show the 

gain and phase plots for the 

same RC LPF. Notice 

particularly that the phase is 

-45 degrees at the corner 

frequency. Observe that 

cascading two of these filters 

would increase the rolloff 

rate to -40 dB / decade (-12 

dB / octave) and doubling 

the time delay or -90 degrees 

phase shift.  

 

 

 

[I’m here now!  … scp] 

The famous Butterworth LPF has a magnitude gain response given by 
n

f
fH

2
)2(1

1
)(

π+

= , 

where n is the number of reactive elements (poles) in the LPF. In our case, this would be the 

number of capacitors. Butterworth only dealt with filters with an even number of poles in his 

paper. His plot of the frequency response of 2, 4, 6, 8, and 10 pole filters is shown as A, B, C, D, 

and E in this original graph. 
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Frequency response plot from the original paper. 

 

The RC low pass filter above is a first order Butterworth filter.  To look at a more complicated 

system, we now consider a 3
rd

 order Butterworth filter.  First we repeat an RC filter result. 

 

Overview 

The frequency response of the Butterworth filter is maximally flat, that is it has no ripples in the 

passband, and rolls off towards zero in the stopband. These filters are often used in audio work 

because of their maximally flat amplitude response. 

The system response for a second order Butterworth LPF is given by  

2)2(21

1
)(

fj
fH

π++

=  
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III. Lab Assignment 

Be sure that you have done the prelab reading indicated above.  First we will list some of the 

functions that you will need to do the following exercises.  Often the names used in Matlab differ 

from those that you might expect from your math courses.  Use the Help system to search on 

these names to better understand how to use them.  The goal is to familiarize you with various 

functions and for you to get proficient at figuring out how to use the help files, manual and other 

resources to make stuff work in MATLAB. 

 

Useful Functions: 

 

abs(z) - returns the magnitude of a complex number or vector 

 

angle(z) - returns the phase angle in radians for each element in z. 

 

heaviside(x) - has the value 0 for x < 0, 1 for x > 0, and 0.5 for x = 0. – This is the unit Step 

function as you might recall from previous labsforuier. 

 

ezplot(fun,[min,max]) -  a very useful function for quickly plotting both numerical vectors and 

symbolic functions, if it doesn’t look exactly how you want you can specify the plot range in the 

function call and then by choosing Edit Plot in the tools menu change the axes and many of the 

plot properties. 

 

fourier(f,v) takes the symbolic Fourier transform of function f with the output in term of variable 

v. 

 

ifourier(F,u) returns the symbolic inverse Fourier Transform with the output in terms of the 

variable u. 

 

logspace(a,b,n) – useful for creating vectors spanning a large range with a constant number of 

points per decade. 

 

Loglog – Creates a Log-log scale plot 

 

semilogx, semilogy – Creates semilog plots 

 

subplot(m,n,p) – allows for the arrangement of multiple plots 

 

subs(S, new) – this substitutes the values or value of new into the symbolic expression S, in 

particular this provides a way to produce an output vector of the values of the symbolic 

expression S evaluated at the input vector new’s elements. 

 

The FT of a signal is a complex function in several situations. , hence, when we plot the FT  

a signal, we plot the absolute value of the FT (Amplitude or Magnitude Response) on a graph, 

and the phase or angle (Phase Response) on a totally different graph. The phase response 

represents any time delay which might reside in a signal. 
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Part I: 

 

First we will get a bit of practice using the fourier transformand using MATLAB to do symbolic 

calculations.  Record your results on the results form below. 

 

Declare the symbolic variables w and t. 

 

1) Define a function x as the constant value 1 and find the Fourier transform of this function and 

record your result. 

 

2) Take the Fourier transform of a cosine with a radian frequency of 1 and record your result. 

 

3) Now you will create a program to take the Fourier transform of a single pulse.  First open a 

blank M-File the easiest way it to right click in the current folder window.  Give the function a 

name and save it.  In the M-File define t and w as symbolic variables and using the Heaviside 

functions create an expression defining a pulse of unit height and width centered on t=0.  Use 

ezplot to plot this input function over the interval -1 to 1.  When in the M-file edit window you 

can check your program by choosing Save File and run from the debug menu.  Be sure that you 

have properly defined the pulse before proceeding.  Next in the M-file take the Fourier transform 

of this function and have it printed to the command window and use ezplot to plot this function 

over the interval -30 to 30.  Use the subplot command before each use of ezplot so that your final 

M-file will plot first the pulse and then its Fourier transform.  Turn in both a printout of your 

completed M-File and the plot output showing the two graphs.  Later go back and manually 

rewrite the symbolic Fourier Transform result that was output in terms of sin function and verify 

that you get the expected and more familiar expression for this result. 

 

4) Use Matlab to compute the Fourier transform of the impulse response of the single pole RC 

filter.  You will here create and M-file that will compute the transfer function from the impulse 

response and then produce a two part Bode plot of the magnitude and phase of the filters 

frequency response.  Here roughly are the steps to follow, use the help file and the error 

statement that will inevitably show up in the command window to debug your program. 

 

a. Declare the variables t and w as symbolic 

b. Enter an expression for the impulse response h with a time constant that corresponds to 66.3 

kHz 

c. Compute H, take the symbolic Fourier Transform of the impulse response (this is the 

frequency response) 

d. Create a logarithmically spaced vector x of 100 points between 10
3
 rad/sec and 10

7
 rad/s 

e. Create a vector that consists of the Magnitude values of H evaluated at the x points 

f. Create another vector consisting of the phase angle of H also evaluated over x and in units of 

degrees. 

g. Make a log-log subplot of the magnitude vs frequency 

h. Make a semilog subplot of the phase vs. log frequency. 

This is the standard Bode plot of magnitude and phase. 
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Turn in both a printout of the M-file that you wrote to accomplish the above and your Bode 

plots. 

 

5) Now repeat the above exercise to creates the Bode plots of rhe frequency response for a 2nd 

order Butterworth filter with a -3 db corner frequency also of 66.3 KHz, this will the same 

frequency used in the hardware lab to follow.   

 

Part II: 

 

Here we will see how to use a powerful set of MATLAB commands to design a filter like that 

you will build and measure in the next week’s lab and to easily plot it’s step response, impulse 

response and the Bode plot of it’s transfer function.  We will learn how a linear system can be 

defined in MATLAB by defining the numerator and denominator of its transfer function. 

 

Here we will be using the following new commands: 

 

Buttap 

lp2lp 

step 

impulse 

bode 

 

as well as: 

 

subplot 

figure 

 

to produce an M-file that will design a 2
nd

 order butterworth filter with a 1 rad/sec bandwidth, 

plot it’s various response functions, then scale the response to the frequency of the filter you will 

measure next week and to plots its response functions as well.  Be sure to use the MATLAB help 

functions to look up the correct syntax and use of the various commands.  As you type them in 

the M-File editing window highlights and underlines will indicate syntax problems to make 

debugging easier. 

 

MATLAB also has other specialized function to produce designs for other common filter types: 

 

besself Bessel Filters have a maximally flat (smooth) phase response which is good for keeping 

pulses looking like pulses (attention to those in the digital realm). These filters are 

proof that “phase matters”. 

 

butter Butterworth Filters have the “flattest” (smoothest) possible amplitude response within 

their pass and stop bands. 

 

cheby1 Chebyshev filters of type 1 have a steeper rolloff than a Butterworth filter but with the 

additional cost of more pass band ripple. 



  Lab 6 rev 2.1-kdp-2011 

13 

 

cheby2  Chebyshev filters of type 2 have a steeper rolloff than a Butterworth filter but with the 

additional cost of more stop band ripple. 

 

Ellip Elliptic filters, also known as Cauer filters, have equalized amounts of ripple in both the 

pass band and the stop band.  These have the fastest cutoff for a given filter order. 

 

Here is a picture of the response of some of the 5
th

 order versions of these filters that makes 

clearer their different response characteristics and their tradeoffs. 

 

 
 

Now to the actual lab procedure: 

 

1) You will be creating an M-file that with perform all of the following steps and plots.  Create 

an M-file and give it a name. 

 

2) Using the command buttap generate and print the zeros, poles and gain of a second order 

Butterworth filter. 
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3) Given these values define the transfer function that defines this response.  The numerator of 

the transfer function will be defined by the zeros (z) and the denominator will be defined by the 

poles (p).  Write two expressions for the vectors num[…] and den […] that define these values.   

 

Here is a bit more explanation on this method of defining a linear system: 

 

 

 
 

4) Using program command statements of the form  
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Subplot (X,Y,Z), step (num,den) 

 

create a figure with the step, impulse and bode plots for the response for the 2
nd

 order 

Butterworth filter with the plots arranged in one column and three rows.  Stretch them out to fill 

the page vertically. 

 

5) Use the command “figure” to create another figure for your next set of plots. 

 

6) In the bad old days when computing power was expensive and pencils were cheap, filters 

would be all be first designed from formulas to be low pass filters with a 1 rad/sec cutoff 

frequency.  You would file these for when you needed a similar filter. Another set of formulas 

were then used to transform these filters into high pass or band pass filters at different 

frequencies.  This practice has persisted into MATLAB which has specific functions to scale the 

computed filters to the desired frequency and type. 

 

Use the lp2lp (low pass to low pass) function to scale your filter to a pass band frequency of 

100KHz.   

 

7) Finally in the new figure create a 3 row by one column matrix of the following graphs” 

 

Step response, impulse response, and Bode plot. 

 

Turn in the Printed values of your poles and zeros for the original design and the transfer 

function of the scaled filter and the two plots of the three responses. 

 

Check to make sure that your work is correct.  Make sure that qualitatively the impulse response 

looks like the derivative of the step response at each point.  Make sure that your two Bode plots 

have the correct -3dB frequencies. 

 

Turn in printouts of your poles and zeros the normalized (1 rad/sec) and scaled filters, their 

respective plots and the single m-file that generates all of this, which when you think about it is 

remarkably compact give the complexity of the underlying calculations being performed. 
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1.1 Lab Results: 

 

Answers Lab6  #=___  Name:_______________Section:____  

Compare the results of Parts I, II, and III. Unnormalize the Matlab and Simulink 

results for the cutoff frequency to compare with your hardware results.  Find the 

effect of using a sine wave input of amplitude 3 + (0.1 times #) amplitude, not 1. 

 Unnormalized RC filter plots 

Matlab plots  |H(w)|      angle H(w)   

 

 

Simulink plots |H(w)|      angle H(w)   

 

 

Hardware plots |H(w)|      angle H(w)   

 

 

         Unnormalized 2nd order Butterworth plots 

Matlab plots  |H(w)|      angle H(w)   

 

 

Simulink plots  |H(w)|      angle H(w)   
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Hardware plots  |H(w)|               angle H(w) 


